OSTEOCHONDRAL INJURY TO THE KNEE

I@OP CASE OF THE WEEK

20-year-old male baseball catcher, increased activity, right knee pain. MRI 25/02/2020 OCD LFC. Healing stable or unstable?

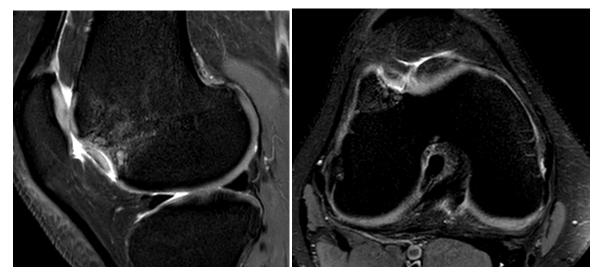


Fig.1. Sagittal PD SPAIR high signal cleft undermines articular cartilage & subchondral bone fragment of the anterior lateral femoral condyle with high signal cysts deep to lesion.

Fig.2. Axial PD SPAIR non displaced unstable osteocondral fragment inferior lateral trochlea.

Fig.3 & 4. Sagittal and coronal PD images demonstrate trabecular condensations beneath the non-displaced fragment

MRI Findings:

- T1: variable signal, intermediate to low adjacent to fragment and variable fragment signal
- T2: high signal cleft demarcating fragment from bone indicates unstable lesion
 - low signal loose bodies, outlined by high fluid signal
 - o donor site defect demonstrates high fluid signal
- MRI clues of instability
 - high signal cleft between fragment & adjacent bone on T2
 - o fluid-filled cysts deep to lesion
 - o high signal intensity line extending through the articular cartilage overlying the lesion
 - o focal osteochondral defect full of joint fluid resulting from complete detachment of fragment

Discussion:

- Overview
 - result from aseptic separation of osteochondral fragment with gradual fragmentation, articular surface and osteochondral defect. Often associated with intraarticular loose bodies.
- Epidemiology
 - demographics

- juvenile form: age 10-15 while the physis is still open
- adult form (skeletal maturity)
 - approximately a 2:1 male to female ratio
- o location
 - knee: posterolateral aspect of medial femoral condyle (70% in knee)
 - capitellum of humerus
 - talus
- Classification:

Clanton Classification of Osteochondritis (Clanton and DeLee)	
Type I	Depressed osteochondral fracture
Type II	Fragment attached by osseous bridge
Type III	Detached non-displaced fragment
Type IV	Displaced fragment

• Aetiology:

- Uncertain, majority of cases thought to result for trauma. 40% have history of trauma.
- Other postulated causes include:
 - avascular necrosis (AVN), fat emboli, microtrauma, familial dysplasia
- Pathoanatomic cascade
 - softening overlying articular cartilage with intact articular surface
 - early articular cartilage separation
 - partial detachment of lesion
 - osteochondral separation with loose bodies
- Clinical
 - Variable, from asymptomatic to pain, locking (loose body), joint effusions & synovitis.

• Differential diagnosis

 normal irregular distal femoral epiphyseal ossification, AVN, osteochondral impaction or stress/insufficiency fracture

• Management

• Nonoperative

- Restricted weight bearing & bracing: stable lesions in children, asymptomatic adults
- Outcomes: 50-75% will heal without fragmentation
- \circ Operative
 - diagnostic arthroscopy: impending physeal closure
 - signs of instability, expanding lesions, failed non-operative management
 - subchondral drilling with K-wire or drill: stable lesion seen on arthroscopy
 - fixation of unstable lesion: unstable on arthroscopy/MRI >2cm: 85% heal peads OCD
 - chondral resurfacing: large lesions, >2cm x 2cm
 - knee arthroplasty: patients > 60 years

Reference & Further reading:

Maeurer J. Imaging strategies for the knee. Thieme Publishing Group. (2006) ISBN:3131405619

Sailors ME. Recognition and Treatment of Osteochondritis Dissecans of the Femoral Condyles. J Athl Train. 1994;29 (4): 302-306. Michael JW, Wurth A, Eysel P et-al. Long-term results after operative treatment of osteochondritis dissecans of the knee joint-30-year results. Int Orthop. 2008;32 (2): 217-21.

De smet AA, Fisher DR, Graf BK et-al. Osteochondritis dissecans of the knee: value of MR imaging in determining lesion stability and the presence of articular cartilage defects. AJR Am J Roentgenol. 1990;155 (3): 549-53.